

Surface Technology for the Agile Air Transportation System

Presented by Sandy Lozito
Principal Investigator
NGATS-ATM Airportal Project

Outline

- NASA Aeronautics research overview
- Airspace System Program (ASP) overview
- Next Generation Air Traffic System Air Traffic Management (NGATS ATM) - Airportal Project Research
 - Status
 - Problem statement
 - Candidate research areas
 - Expected Benefits
 - Partnerships

NASA Aeronautics Research: Four-Level Approach

- * Level 1: Conduct foundational research to further fundamental understanding of underlying physics and an ability to model that physics.
- ♣ Level 2: Leverage foundational research to develop technologies and analytical tools focused on disciplinebased solutions relative to next generation airspace and airportal issues.
- Level 3: Integrate multi-disciplinary methods and technologies to balance solutions across disciplines.
- Level 4: Build on results from Levels 1 - 3 to support development of high capacity, efficient, and safe airspace and airportal systems that will enable NGATS as defined by Joint Planning and Development Office (JPDO).

Technologies & Capabilities

Integrated Systems

Multi-Discipline Interactions

Discipline Level Technologies

Fundamental Physics & Modeling

Airspace Systems Program

Goal: To maximize operational throughput, predictability, efficiency, system agility, and access into airspace system while assuring safety, security and environmental protection

Projects

- **♣ NGATS ATM-Airspace Project**
- **♣ NGATS ATM-Airportal Project**

Airspace Systems Program

Project Research Thrusts

NGATS ATM-Airspace Project

- Dynamic airspace configuration
- Traffic flow management
- Separation assurance (sequential) for transition and cruise
- Separation assurance (simultaneous) for terminal airspace

NGATS ATM-Airportal Project

- Coordinated surface movement optimization
- Separation requirements and assurance for terminal area

- ♣ NGATS ATM-Airportal Project will focus on research issues related to ground and terminal area domains, while NGATS ATM-Airspace Project will focus predominantly on en route airspace.
- ♣ Each project will leverage research in the other project.
- ♣ Each project will integrate its results with those of the other to ensure alignment of "block-to-block" solutions with NGATS needs.

NGATS ATM-Airportal Project Status

- NGATS ATM-Airportal Project is in a planning and development stage
- We will be mapping closely to the Joint Planning and Development Office (JPDO) NGATS goals for the surface and terminal area
- There are a number of candidate research areas that we expect to pursue in our project
 - These areas have not yet been finalized

NGATS ATM- Airportal Project Problem Statement

- Airportal surface environment represents a significant NAS constraint
 - Complexity and inflexible geographic constraints of the airport configuration (runways, taxiways, gates)
 - Mix of vehicles on the surface (aircraft, trucks, baggage carts)
 - Wake vortex and weather constraints
 - Multiple users with different goals and infrequent data sharing

NGATS ATM- Airportal Project Problem Statement (2)

- Joint Planning and Development Office (JPDO)
 estimates indicate a growth of the number of
 passengers from 2 million to 4 or 5 million per day
- Existing airportal design and technology will not support this growth without additional automation technology
- The goal is to create more flexibility and strategic planning related to enable capacity growth for surface operations

NGATS ATM- Airportal Project Problem Statement (3)

- The JPDO calls for improvements in airport operations
 - Reduce runway occupancy time
 - Improve wake vortex sensing and prediction
 - Increase use of automated approach, landing, and departure systems
 - Reduce current separation standards
 - Enable 4-D trajectory-based operations
 - Expand use of regional airports
 - Meet environmental performance requirements

NGATS-ATM Airportal Project 4D Trajectory Operations

- JPDO calls for 4-D trajectories block-toblock
- Capacity improvement
- Increased throughput
- Reduced taxi delays
- Reduced workload
- Reduced runway crossings
- Improved Aircraft separation

NGATS-ATM Airportal Project Optimization Research

- Optimization Research
 - Multiple competitive users competing for scarce resources
 - Human operators require support for complex decisionmaking
 - Optimization must be robust and consider equity issues

NGATS-ATM Airportal Project Wake Vortex and Surface Management

- Integration of these data required for capacity and efficiency
- Wake data will inform surface automation of expected arrivals/departures
- Surface data will inform wake technologies of arrival and departure acceptance rates and airport conditions

NGATS ATM-Airportal Project Closely-Spaced Parallel Runway and Single Runway Operations

- Research to enable spacing reductions for closelyspaced runway operations
 - Wake prediction
 - Human factors
- Research to enable reduction in longitudinal separation for runways
 - Wake prediction
 - Human factors

NGATS-ATM Airportal Project Surface Separation Assurance

- Runway incursion
- Taxi conflicts
- Joint work with Integrated Intelligent Flight Deck Project (IIFD) in the Safety Program

NGATS-ATM Airportal Project Environmental Constraints

- Environmental required performance (air and noise) must be addressed
 - Capacity improvement solutions must be compatible with these constraints
- Continued development in environmental modeling is required

NGATS-ATM Airportal Project Human Factors

- Human-machine allocation
 - Intervention requirements
- Roles and responsibilities
- Interface design
- Non-normal situations and graceful degradation

NGATS ATM- Airportal Project Expected Benefits

- Enable safe and environmentally compatible Super Density Operations
 - Reduce longitudinal and lateral spacing for aircraft for converging and closely spaced parallel runways
 - Reduce runway occupancy times
 - Reduce taxi times
 - Balance arrivals and departures
 - Enable dynamic airportal operations
 - Enhance airportal and terminal operations predictability

NGATS ATM- Airportal Project Partnerships

- Three types of partnerships opportunities
 - -Industry
 - -Other Government Agencies and NASA Aeronautics Programs
 - •FAA
 - •Volpe
 - •DOT
 - •DOD
 - NASA's Safety Program
 - •NASA Fundamental Aeronautics Program
 - -NASA Research Announcements (NRA) with Universities and Industry
 - Directed at fundamental research areas